Pares Negociação: Correlação.
Correlação é um termo da análise de regressão linear que descreve a força da relação entre uma variável dependente e uma variável independente. Central para a negociação de pares é a ideia de que, se as duas ações (ou outros instrumentos) estiverem correlacionadas o suficiente, quaisquer alterações na correlação podem ser seguidas por uma reversão para a tendência média do par, criando uma oportunidade de lucro. Por exemplo, o estoque A e o estoque B são altamente correlacionados. Se a correlação se enfraquece temporariamente - a ação A sobe e a ação B desce -, um comerciante de pares pode explorar essa divergência, encurtando a ação A (a questão de maior desempenho) e indo muito tempo em ação B (o sub-performer). Se as ações reverterem para a média estatística, o comerciante pode lucrar. (Veja também: Correlação e Regressão.)
A importância da correlação.
Correlação mede a relação entre dois instrumentos. O gráfico diário (abaixo) mostra que os contratos futuros e-mini S & P 500 (ES, em verde) e e-mini Dow (YM, em rosa) têm preços que tendem a se mover juntos ou que estão correlacionados. (Para mais, veja: Backtesting e Forward Testing: O Importante da Correlação.)
Este gráfico diário dos contratos futuros de ES e YM e-mini mostra que os preços tendem a se mover juntos. Imagem criada com a TradeStation.
Lembre-se, os comerciantes de pares tentam:
Identifique as relações entre dois instrumentos. Determine a direção do relacionamento. Execute negociações com base nos dados apresentados.
A correlação entre quaisquer duas variáveis - como taxas de retorno ou preços históricos - é uma medida estatística relativa do grau em que essas variáveis tendem a se mover juntas. O coeficiente de correlação mede até que ponto valores de uma variável estão associados a valores de outra. Os valores do coeficiente de correlação variam de -1 a +1, onde:
A correlação negativa perfeita (-1) existe quando os dois títulos se movem em direções opostas (ou seja, o estoque A sobe e o estoque B desce). Existe uma correlação positiva perfeita (+1) se os dois títulos se moverem em uníssono perfeito (ou seja, o estoque A e o estoque B se moverem para cima e para baixo ao mesmo tempo). Nenhuma correlação (0) existe se os movimentos de preço forem completamente aleatórios (o estoque A e o estoque B sobem e descem aleatoriamente). (Para mais, veja: O que significa se o Coeficiente de Correlação é Positivo, Negativo ou Zero?)
Os comerciantes de pares buscam instrumentos cujos preços tendem a se mover juntos; em outras palavras, cujos preços estão correlacionados. Na realidade, seria difícil (e altamente improvável) conseguir uma correlação positiva perfeita sustentada com quaisquer dois títulos - isso significaria que os preços se imitavam exatamente. Em vez disso, os pares traders procuram títulos com um alto grau de correlação, para que possam tentar lucrar quando os preços se comportam fora da norma estatística. Correlações de 0,8 ou acima são frequentemente usadas como referência para pares de traders (uma correlação inferior a 0,5 é geralmente descrita como fraca). Idealmente, boa correlação apresenta-se ao longo de vários prazos. (Veja também: Como encontro uma correlação positiva no mercado de ações?)
Determinando a correlação.
O primeiro passo para encontrar pares adequados é procurar títulos que tenham algo em comum, negociem com boa liquidez e possam ser encurtados. Devido a riscos de mercado semelhantes, as empresas concorrentes dentro do mesmo setor formam pares potenciais naturais e são um bom ponto de partida. Exemplos de instrumentos potencialmente correlacionados podem incluir pares como:
Coca-Cola e Pepsi Dell e Hewlett-Packard Duke Energy e NextEra Energy E-mini S & P 500 e E-mini Dow Exxon e Chevron Lowe e Home Depot McDonald’s e Yum! Marcas
O próximo passo é determinar como eles estão correlacionados. Você pode medir isso usando um coeficiente de correlação (descrito acima), que reflete quão bem os dois títulos estão relacionados entre si. Os cálculos específicos por trás do coeficiente de correlação são um pouco complicados e estão fora do escopo deste tutorial; no entanto, os comerciantes têm várias opções para determinar esse valor:
A maioria das plataformas de negociação fornece algum tipo de indicador técnico que pode ser aplicado aos dois títulos, realizando as funções matemáticas automaticamente e plotando os resultados em um gráfico de preços. Se você não tiver acesso a esse indicador técnico específico, poderá pesquisar on-line "calculadora de coeficiente de correlação" para acessar as ferramentas on-line que realizam os cálculos.
Você pode inserir os dados de preço em um programa de planilha eletrônica como o Excel e usar sua função “CORREL” para executar os cálculos, conforme mostrado na figura a seguir.
O Excel pode ser usado para calcular o coeficiente de correlação de um par.
Relação preço.
Depois de encontrar pares correlacionados, você pode determinar se o relacionamento é reversão à média; isto é, quando o preço diverge, ele reverterá para sua norma estatística? Você pode estabelecer isso plotando a taxa de preço do par. Como o coeficiente de correlação, a maioria das plataformas de negociação vem equipada com um indicador técnico (talvez denominado razão de preço ou taxa de spread) que pode ser aplicado a um gráfico para traçar a relação de preço de dois instrumentos - que essencialmente fornece uma representação visível e numérica do preço. de um instrumento dividido pelo preço do outro:
O Excel pode ser usado para calcular o índice de preço ou spread de um par.
68,26% dos dados estarão dentro de +/- um desvio padrão da média. 95,44% dos dados estarão dentro de +/- dois desvios padrão da média. 99,74% dos dados estarão dentro de +/- três desvios padrão da média.
Aplicando esses dados, você pode esperar até que a relação de preço divirta "x" número de desvios padrão - como +/- dois desvios padrão - e insira uma negociação longa / curta com base nas informações (o número de desvios padrão selecionado é determinado através de análise e otimização histórica). Se o par voltar à sua tendência média, o negócio pode ser lucrativo. (Para mais, consulte: Usando a fórmula de distribuição normal para otimizar seu portfólio.)
Eventos que provocam fraqueza na correlação.
Quando dois instrumentos são altamente correlacionados, certos eventos podem causar uma fraqueza temporária na correlação. Como muitos fatores que causariam movimentos de preços afetariam igualmente os pares correlacionados (como anúncios do Federal Reserve ou turbulência geopolítica), os eventos que desencadeiam a fraqueza na correlação geralmente se limitam a fatores que afetam apenas um dos instrumentos. Por exemplo, a divergência pode ser o resultado de mudanças temporárias de oferta e demanda dentro de uma ação, como quando um único grande investidor muda de posição, seja comprando ou vendendo em uma das ações representadas em um par. (Veja também: 4 indicadores-chave que movem os mercados.)
Alterações relacionadas à saúde financeira da empresa. Reestruturação ou fusões. Informações significativas sobre seus produtos (positivos ou negativos). Mudanças no gerenciamento de chaves. Questões jurídicas ou regulatórias que podem afetar o poder da empresa de realizar negócios.
As bolsas de valores dos EUA estão autorizadas a emitir uma suspensão de negociação - uma suspensão temporária da atividade de negociação - com base em sua avaliação de um anúncio. Em geral, quanto maior a probabilidade de o anúncio influenciar o preço, maior a probabilidade de a troca exigir uma suspensão até que a notícia seja divulgada ao público.
Movimento de preço de 10% para títulos no S & amp; 500, índice Russell 1000 e alguns produtos negociados em bolsa. Movimento de preço de 30% para outras ações com preço de US $ 1 ou acima. Movimento de preço de 50% para outras ações com preço abaixo de $ 1.
A fraqueza também pode ser causada por desenvolvimentos internos - ou eventos que ocorrem dentro das empresas - como fusões e aquisições, relatórios de lucros, mudanças de dividendos, desenvolvimento / aprovação de novos produtos e escândalos ou fraudes. Particularmente, se um evento interno for inesperado, o preço das ações da empresa envolvida pode sofrer flutuações de preço rápidas e drásticas. Dependendo do evento, a mudança de preço pode ser muito curta ou pode resultar em uma mudança de tendência.
Parear a estratégia de negociação: como usar o & quot; PairTrading & quot; pacote.
Este artigo mostra como você pode usá-lo.
O par de negociação é uma estratégia de negociação neutra no mercado e dá aos comerciantes a chance de lucrar, independentemente das condições do mercado. A ideia dessa estratégia é bem simples.
1: Selecione dois estoques (ou quaisquer ativos) que se movam de maneira semelhante.
2: Ações com desempenho reduzido, compre um menor.
3: Se “spread” (diferença de preço entre dois estoques) convergir, feche sua posição.
Então, vamos começar a explicar como usar este pacote.
(Este exemplo está no manual em PDF deste pacote)
0: Instalar e carregar o pacote.
Você pode instalar e carregar o pacote “PairTrading” via CRAN da mesma forma que outros pacotes.
1: Carregar dados de amostra.
Preparamos os dados do preço das ações da amostra em nosso pacote. Você pode carregá-lo usando o comando “data”.
2: Estimar parâmetros.
Em seguida, extraímos dois preços das ações (a partir de 31 de março de 2008) e estimamos os parâmetros.
No momento, temos apenas um método de regressão linear normal para estimar parâmetros, mas vamos desenvolver um método mais sofisticado no futuro.
O resultado da estimativa contém o seguinte conteúdo.
O mais importante nessa estimativa é “espalhar”, então tentamos plotá-lo.
E você pode verificar a estacionariedade disso usando a função “IsStationary”.
Esta função retorna o resultado do teste de raiz unitária de dois tipos.
(teste aumentado de Dickey-Fuller (ADF) e teste de Phillips-Perron)
3: Estimar parâmetros para back-test.
Para executar o back-test, você precisa estimar os parâmetros historicamente usando a função “EstimateParametersHistorically“. Esta função faz algo como “regressão rolante” para estimar parâmetros. Este ponto é diferente da função “EstimateParameter”.
4: criar sinal de negociação.
Neste caso, o sinal de negociação é desenhado como abaixo.
ading sinal é.
5: desempenho do teste de volta.
Neste caso, nossa estratégia parece funcionar corretamente 🙂
6: Conclusão e observações.
Pode ser útil para você entender o conceito básico de par de negociação se estiver interessado nela.
Comentários estão fechados.
Posts populares recentes.
Artigos mais visitados da semana.
Jobs para usuários de R.
É alimentado por WordPress usando um design bavotasan.
Direitos autorais & copy; 2017 R-blogueiros. Todos os direitos reservados. Termos e Condições para este site.
Pare a estratégia de negociação em r
O comércio de pares é uma forma de reversão à média que tem uma vantagem distinta de estar sempre protegida contra movimentos do mercado. Geralmente, é uma estratégia alfa alta, quando apoiada por algumas estatísticas rigorosas. Este notebook executa os seguintes conceitos.
O notebook destina-se a ser uma introdução ao conceito, e considerando que este portátil possui apenas um par, você provavelmente desejaria que seu algoritmo considerasse muitos pares de uma só vez.
O caderno foi originalmente criado para uma apresentação no departamento Applied CS de Harvard e desde então tem sido usado em Stanford, Cornell e em vários outros locais. Se você estiver interessado em aprender mais sobre como o Quantopian está sendo usado como uma ferramenta de ensino nas melhores universidades, entre em contato comigo pelo e-mail [email & # 160; protected]
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Veja um algoritmo muito simples com base na abordagem apresentada no caderno.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Aqui está um algoritmo mais sofisticado escrito por Ernie Chan. Esse algoritmo calcula um índice de hedge em vez de apenas manter quantidades iguais de cada título.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Coisas muito úteis.
O que faz perder sistematicamente por quase 3 meses? A cointegração falha nesse período?
Basicamente sim, eles acabaram não sendo cointegrados nesse período de tempo, mas voltaram a ser solidificados a longo prazo.
Eu acho que o rebaixamento que você apontou é um forte argumento de por que você realmente quer muitas negociações de pares ao mesmo tempo. Os pares podem ser cointegrados em diferentes escalas de tempo, e qualquer um não estará sempre em um estado comerciável (spread grande, spread pequeno). Ao aumentar o tamanho da amostra, é possível aumentar a probabilidade de que pelo menos um par seja altamente comercializável em um determinado momento e suavizar os solavancos estranhos que você vê aqui.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Obrigado por isso. Muito útil mesmo. Eu notei que você usou o teste Augmented-Dickey Fuller para o teste de cointegração. Você tem implementação semelhante usando o teste de Johansen? Não consigo encontrar o teste johansen com python.
Parece que, enquanto houve algumas tentativas de adicionar o teste de Johansen à biblioteca de statsmodels, atualmente não há implementação embutida. Aqui, por exemplo, é uma implementação de terceiros. Não tenho certeza de quando será adicionado às bibliotecas do Python. Existe uma maneira de contornar o problema?
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Obrigado. Eu vi esse link. Muito complicado para implementar e escrever tudo no IDE. Na verdade, Satya B tentou isso aqui: quantopian / posts / trading-baskets-co-integrado-com-espião.
A beleza do teste de Johansen é que ele gera autovetores, que eu acho que você pode usar outros métodos para calcular, embora eu não consiga lembrar no momento, para até 12 ativos e muitas outras coisas, que podem ser usados para criar um cesta. Eu estava olhando para uma das estratégias de arbitragem de índice do Ernie e tentando replicá-lo na plataforma do Q para avaliar o desempenho após taxas / comm etc. Eu notei que as taxas pareciam absorver muito do desempenho. O ABGB & amp; O par de FSLR acima tem um índice de sharpe de 0,75, mas terminou com um índice de sharpe de -0,29. Um monte de parecendo lucrativo pares acabou por ser não rentável após o spread bid / ask, taxas, comissão etc. Portanto, eu estou olhando para 3 ou mais ações par trading e index arb. O teste johansen tornará isso mais fácil de implementar.
Eu continuarei tentando.
O notebook é uma excelente introdução estatística para pares de negociação, eu recomendo que qualquer pessoa interessada no tópico também analise algumas das pesquisas financeiras. Anatomy of Pairs Trading é um bom começo, e as referências são úteis também. Mais dois artigos gerais sobre estratégias de arbitragem de risco são Características de Risco e Retorno em Arbitragem de Risco e Arbitragem Limitada em Mercados de Ações. Há algumas lições caras que as pessoas aprenderam sobre a execução desses tipos de estratégias, e vale a pena conhecer as lições com antecedência. Avisado está armado.
Anthony, bom te ver aqui! Eu estive procurando por uma boa implementação do teste de Johansen por um tempo, mas não consegui encontrar um. Há uma discussão (mas obsoleta) bem longa e solicitação de pull no github sobre incluí-la em statsmodels: github / statsmodels / statsmodels / issues / 448 e github / josef-pkt / statsmodels / commit / bf79e8ecb12d946f1113213692db6dac5df2b6e9 É realmente muito ruim como definitivamente no quant finance isso é muito usado.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
@ Aaron. Obrigado pelo heads up. Aprecie isso vindo do seu. Vou passar algum tempo com esses papéis.
@ Thomas. Obrigado pelo link. Como você disse, é um pouco velho. Melhor que nada, suponho.
Aqui está uma implementação de python para modelos de correção de erros de vetores. Você também pode usá-lo para encontrar pesos de cointegração. econ. schreiberlin. de/software/vecmclass. py.
Aqui está uma versão do algoritmo de Ernie Chan modificado para negociar vários pares. Essa é uma boa maneira de obter múltiplos fluxos de retorno não correlacionados e reduzir a versão beta da estratégia geral.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
@Delany, Existem métodos disponíveis para a tela de pares usando testes estatísticos? Ou aqueles geralmente são computacionalmente caros?
Estamos trabalhando em uma maneira de tornar os cadernos capazes de serem clonados em um único ambiente de pesquisa. Enquanto isso, os interessados em brincar com o notebook do post original podem baixá-lo aqui. Após o download, envie-o para sua conta de pesquisa. Se você ainda não tiver uma conta de pesquisa, insira um algoritmo no concurso para receber acesso.
@ bom comerciante, O método fornecido no notebook irá rastrear uma determinada lista de valores mobiliários para cointegração, a condição subjacente necessária para a negociação de pares. O problema não é tanto a complexidade computacional quanto a perda de poder estatístico. Quanto mais comparações você fizer, menos peso deverá colocar em valores de p significativos. Este fenômeno é descrito aqui. Para ser estatisticamente rigoroso, você deve aplicar uma correção de Bonferroni aos valores de p obtidos de um script de cointegração em pares. A razão é que quanto mais valores p você gerar, maior a probabilidade de encontrar valores de p significativos que sejam espúrios e não reflitam o comportamento de cointegração real nos títulos subjacentes. Uma vez que o número de comparações feitas quando se busca a cointegração paritária em n títulos cresce a uma taxa de O (n ^ 2), mesmo olhando para 20 títulos tornaria a maioria dos testes estatísticos inúteis. Uma abordagem melhor é apresentar um pequeno conjunto de títulos candidatos usando a análise dos vínculos econômicos subjacentes. Um pequeno número de testes estatísticos pode ser feito para determinar quais pares, se houver, são cointegrados. Deixe-me saber se é isso que você quis dizer.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Eu discordo um pouco sobre o problema com comparações demais. A correção de Bonferroni é apropriada quando você está procurando a verdade. Por exemplo, se você tiver um questionário com 1.000 itens e o der para pessoas com e sem câncer, você encontrará, em média, 50 itens correlacionados ao câncer no nível de significância estatística de 5%, mesmo que nada no questionário está relacionado ao câncer. Se você considerar combinações de dois ou mais itens, poderá gerar quantos correlatos desejar.
Mas ao projetar estratégias de negociação automatizadas, as relações coincidentes não o prejudicam muito. Eles adicionam ruído aleatório e custos de negociação aos seus resultados. Uma vez que poucos resultados são 100% insignificantes, a maioria das relações tem pelo menos algum pequeno grau de persistência, não é crítico filtrar sua estratégia para aquelas rigorosamente validadas. Os lucros importam, não a verdade. Bonferroni e métricas semelhantes levam você às relações estatisticamente mais confiáveis, que geralmente não são as mais economicamente úteis.
Se por & quot; análise dos links econômicos subjacentes & quot; Você quer dizer começar com pares naturais, como duas empresas semelhantes no mesmo setor, eu não achei isso útil. Basicamente, as pessoas notam as coisas óbvias. Se você quer dizer pensar em relações menos óbvias, especialmente coisas que são invisíveis nos dados usuais que as pessoas usam, então eu concordo. O ideal é que você queira uma história econômica validável para a relação de pares, o que explica por que ela existe e por que não é arbitrada. Isso não apenas protege contra a mineração de dados, mas significa que você pode medir se o efeito continua a funcionar (sem isso, a única maneira de saber se a estratégia não está funcionando é quando você perde dinheiro).
Bom trabalho. Eu não leio seu caderno linha-por-linha, mas posso dizer que será um ótimo acréscimo à biblioteca de exemplos de Quantopian. E seguindo com algos compartilhados - boa jogada.
Você pode dar uma olhada no caderno que publiquei, quantopian / posts / analysis-of-minute-bar-trading-volumes-of-the-etfs-spy-and-sh. Para visualizar como um determinado par entra e sai da cointegração, você pode fazer um enredo semelhante. A aplicação do teste estatístico 390 vezes por dia de negociação ao longo de muitos anos exigiria alguma paciência.
@ Aaron Estou correto em ler seu argumento geralmente da seguinte forma?
- No mundo real, Bonferroni é muito restritivo e o número de pares lucrativos que você perde através da correção supera a certeza estatística que você ganha.
Acho que estamos de acordo quanto ao ponto final que você faz. Acho que muitas das pessoas que fazem a análise econômica de links são simplistas e ignoram as relações potencialmente interessantes que têm maior probabilidade de conter um alfa não arbitrário.
@Grant Obrigado. Na verdade, estamos planejando expandir a biblioteca de exemplos para um currículo completo de finanças de quantificação ensinado com notebooks e algoritmos complementares. Vamos ter uma série de palestras de verão à medida que desenvolvemos mais tópicos, então fique atento a eles. Seu notebook é muito legal e eu me pergunto quão estáveis são as pontuações de cointegração mesmo para pares fortemente cointegrados. Infelizmente, eu não acho que vou ter tempo para investigar isso em um futuro próximo com a produção de nossos outros cadernos de currículo. Estamos à procura de colaboradores convidados, no entanto. Se você tiver algum bloco de anotações que gostaria de incluir em nosso currículo com todo o crédito para o (s) autor (es), envie-o do meu jeito e veremos se ele se encaixaria em nosso conteúdo atual.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
No mundo real, Bonferroni é muito restritivo e o número de pares lucrativos que você perde através da correção supera a certeza estatística que você ganha.
Não precisamente. Sim, Bonferroni é muito restritivo no sentido de que lhe dá poucos pares, mas Bonferroni também o direciona para os pares errados.
No exemplo de um questionário com 1.000 itens dados a pacientes com câncer e pacientes não oncológicos, é provável que a maioria dos itens não tenha efeito sobre o câncer, ou pelo menos esses efeitos tão fracos e complexos que é não vale a pena usá-los para aconselhamento médico. Então, se você quer 5% de significância, você testa cada item no nível 0,005% (ou seja, você quer 3,9 desvios padrão, não apenas 1,6). Você não se importa com isso, porque qualquer efeito real forte o suficiente para importar provavelmente aparecerá com um forte significado. Se você não fez Bonferroni, você acabaria com 50 recomendações mesmo quando nenhum dos itens importasse, e um monte de conselhos inúteis.
Por acaso, Bonferroni é uma correção muito conservadora, e há outras mais sofisticadas que permitem mais itens.
Mas se você tiver 1.000 pares para testar, é provável que muitos deles tenham algum grau de previsibilidade cointegral. Mesmo se não houver previsibilidade, incluir o par extra só adiciona um pouco de ruído à sua estratégia, o que não é terrível. Além disso, você não acredita que qualquer um deles tenha uma previsibilidade tão forte que qualquer um teria percebido e descartado. Portanto, é razoável considerar todos os pares com 5% de significância ou menos e filtrá-los usando critérios econômicos ou outros não relacionados aos dados. Selecionar apenas as relações estatísticas mais fortes não é sábio.
Você pode configurá-lo em uma estrutura bayesiana se desejar consistência e precisão; ou você pode usar apenas as regras gerais ad hoc.
Apenas para os il-pair-literados que querem aprender. deve haver uma história por trás do par? Deve haver uma explicação lógica? Brinquei com pares e descobri, por exemplo, que MorganStanley e Expedia trabalham. mas por que? Ou não se quer saber o porquê.
deve haver uma história por trás do par?
Esta é realmente uma questão semântica, em vez de financeira. Se você adotasse uma abordagem estatística pura sem considerar os pares reais, acabaria com centenas ou milhares de pares, incluindo alguns sobrepostos. Então nós não a chamaríamos de uma estratégia de negociação de pares, mas de uma estratégia de equidade muito curta.
A idéia de pares de negociação é que você pode obter uma visão adicional, considerando razões específicas para a dependência entre as ações; e essa percepção pode resultar em um posicionamento mais preciso e também evitar grandes perdas quando a relação se rompe.
Relações óbvias, como duas ações de grande capitalização na mesma indústria, tendem a não ser úteis. Isso é confuso às vezes, porque alguns dos famosos pares iniciais envolviam tais pares, e eles ainda são usados como exemplos na maioria dos textos. Mas muitas pessoas estão observando esses spreads muito de perto para obter as altas taxas de Sharpe que você precisa para estratégias não diversificadas, como a troca de pares. Deixe os Sharpes marginais para as pessoas de capital muito curto que têm muito mais posições.
Além disso, quando falamos de uma razão para a relação de pares, estamos falando tanto de um positivo - por que é difícil imaginar um mundo em que os valores dessas empresas divergir de suas proporções históricas - e um negativo Por que essas ações respondem a diferentes notícias econômicas? Assim, para duas empresas quase idênticas, a primeira pergunta é fácil, mas a segunda é difícil. Para duas empresas aparentemente não relacionadas, como a MS e a EXPE, é o contrário. Você pode dizer algo como: "Em uma boa economia, o Morgan Stanley recebe muitos negócios e as pessoas viajam muito," mas isso é basicamente verdade em quase todas as duas empresas.
A razão dos pares clássicos foram duas empresas que responderam aos mesmos fatores econômicos básicos, como preços do petróleo ou taxas de juros ou força do dólar, mas em diferentes pontos da cadeia de fornecimento, dizem os preços do petróleo versus a receita do posto de gasolina. Um único link não é bom o suficiente, praticamente todas as empresas respondem a esses fatores. Mas você pode encontrar pares que combinem com fatores mais restritos, como a atividade de fracking no nordeste dos Estados Unidos ou a precipitação na região central da Califórnia, ou que combinem com uma série de fatores gerais. Ou você pode encontrar duas empresas que atualmente estão em empresas semelhantes, mas que, por razões históricas, estão listadas em setores diferentes. Outra situação comum é a de duas empresas envolvidas em diferentes pontos do ciclo de vida de ativos duráveis; construtoras residenciais e lojas de móveis com geografia semelhante, por exemplo.
De qualquer forma, quando você tem um motivo, você tem coisas para monitorar para ajustar sua posição; e alertá-lo se um grande deslocamento é uma grande oportunidade de negociação ou um sinal do que a relação histórica foi quebrada. Se você não tem um motivo, é melhor ter muita diversificação, o que significa que não pode pagar o trabalho de análise específico de cada par.
Você não admitiria que, se um par tem uma história, então essa história é conhecida e, portanto, não lucrativa para os comerciantes de varejo lentos para negociar? E se alguém pudesse extrair os dados e descobrir, através dos dados, histórias inesperadas de que alguém poderia pelo menos competir no espaço de troca de pares? Eu vejo seu ponto em manter um grande grupo de pares se as histórias que conectam os participantes são fracas ou inexploradas, mas ainda assim, se nós subordinados desejamos participar, por que não usaríamos tal técnica? Ou você acha que os comerciantes de varejo podem capturar e lucrar com o par de pares de casais conhecidos?
Você não admitiria que, se um par tem uma história, então essa história é conhecida e, portanto, não lucrativa para os comerciantes de varejo lentos para negociar?
Não, eu não concordaria com essa opinião. O comércio de pares tende a ser de baixa capacidade, especialmente em ações de baixa capitalização, e exige muito trabalho. Não é atraente para gerentes de ativos porque os valores de investimento e as características de risco são erráticos. É perseguido principalmente por traders profissionais de tempo integral individuais, que podem seguir uma dúzia de pares, além de algumas dezenas de outras estratégias, e traders semi-profissionais que estão dispostos a aceitar o que o mercado lhes dá e permanecer em dinheiro quando Nenhuma de suas estratégias é atraente. Há mais pares bons do que comerciantes competentes que os persigam.
Em princípio, você pode encontrar bons pares usando um filtro automatizado inteligente ou lendo e pensando. Meu sentimento geral é o primeiro é mais difícil, e se você vai fazê-lo, você vai querer fazê-lo para identificar um grande número de bons pares, em vez de dois ou três grandes pares. Nesse caso, eu diria apenas mudar para o capital próprio e perder pares. A coisa boa sobre ler e pensar é que os mais bons são preguiçosos e preferem deixar o computador fazer o trabalho. Então você está competindo com os não-quants, alguns dos quais são muito bons em ler e pensar, mas estão em uma grande desvantagem para alguém com um computador que sabe um pouco de matemática.
Eu não quero parecer dogmático, qualquer um que faça o que as outras pessoas dizem não é susceptível de encontrar grande sucesso em qualquer tipo de negociação. Se você acha que pode criar um algoritmo para identificar bons pares, não há mal algum em tentar. Isso simplesmente não me parece a abordagem mais promissora.
. leva muito trabalho.
Sim. Os pares fáceis de trocar dinheiro foram feitos há muito tempo. Histórias lucrativas em ações de baixa capitalização, embora exponha um par às aberrações da menor volatilidade da empresa não? & quot; Opa, esse estoque solar acabou de perder seu contrato principal. Ou, uau, esse perfurador acabou de obter um contrato de estado inesperado. & Quot; E então a história é reescrita, ou você ou quatro páginas são arrancadas. Pode-se captar tais prelúdios para as mudanças de histórias, se alguém só assiste a uma dúzia de histórias. Mas aqui, onde procuramos evitar a exibição de histórias - sendo totalmente automatizadas, ficamos cravados por essas falhas narrativas em relacionamentos com apenas alguns pares.
Quando você diz mudar para equações longas / curtas, você parece defender o abandono da busca estatística por histórias obscuras (talvez caprichosas) em vez de uma reversão à média mais ampla - isso é verdade? Mas, se alguém tem as ferramentas, por que não criar dezenas e dezenas de comércios de pares estratificados estranhos. Claro que as histórias podem não existir. Mas, novamente, talvez você descubra 10 ou 20 que são únicos. E através de um processo de eliminar os parceiros mal pareados, você acaba com um conjunto gerenciável que é capaz de dançar com as estrelas? Este site não é nada se não um experimento enorme em mineração de dados não?
Novamente, não estou tentando legislar sobre as leis aqui, mas as duas abordagens diretas são (a) tentar encontrar alguns pares que você possa entender ou (b) esquecer pares e tentar construir um grande portfólio de longs e shorts sem se preocupar em emparelhar estoques ou fazer pesquisas não automatizadas. Em outras palavras (a) pesquisa inteligente de nicho ou (b) mineração de dados em massa.
Tentar dividir a diferença encontrando dúzias de pares, mas não fazendo a pesquisa personalizada necessária para entender cada um deles, parece sub-ótimo.
tente encontrar alguns pares que você possa entender.
Se eu estiver lendo as coisas corretamente, por & quot; compreendo & quot; você quer dizer que deveria haver alguma história intuitiva por trás do relacionamento, suponho que haja menos risco de que o relacionamento desapareça de repente? Você está falando sobre um tipo de narrativa, & quot; A razão pela qual pensamos que isto está acontecendo, mas não pode realmente explicar com um modelo, é. & quot; ou um modelo quantitativo explicativo que fornece a história por trás do relacionamento? Digamos que eu encontre um comércio de pares baseado na ideia de que quando os consumidores compram muitos ovos, as vendas de bacon caem e vice-versa. Eu poderia inventar uma história que as pessoas só podem comer tanto no café da manhã, e deixar por isso mesmo. Eu tenho um sentimento caloroso e confuso, e se eu for um operador profissional, espero que minha administração também se sinta quente e confusa. Mas o risco é realmente diferente sem a história? A menos que eu realmente encontre um estudo relevante sobre o café da manhã comendo, ou faça um eu mesmo, então eu poderia ser iludido. E se a causa subjacente não puder ser codificada em um conjunto de regras, então não é realmente uma negociação quantitativa automatizada, certo? Como um usuário do Quantopian que não faz esse tipo de coisa para ganhar a vida, eu preciso pegar um algoritmo no fundo de hedge da Quantopian, deixá-lo rodar e pegar um cheque. Não há tempo para fazer muitas análises off-line.
Há mais pares bons do que comerciantes competentes que os persigam.
soa como a terra do leite e do mel para nós, habitantes de Quantopia. Isso diria que a equipe da Quantopian deveria pensar em produzir pares de candidatos para seus mais de 35.000 usuários para examinar como um monte de formigas, tentando criar histórias para um subconjunto deles (& quot; eu levarei XYZ & amp; PDQ, fazer algumas pesquisas, e ver se consigo encontrar uma "história" para apoiar o relacionamento. & Quot;).
Eu estou apenas tentando descobrir se isso pode ser reduzido a prática para o usuário de Joe Schmo Quantopian, ou se é um esforço sem esperança. Existe um caminho para a Quantopian obter centenas de pares lucrativos e escaláveis que vendem algos para o seu fundo de hedge de US $ 10 bilhões (tenha em mente que, segundo minha estimativa, eles precisam de milhares de algos distintos no fundo)? Ou isso é tudo um monte de blá, blá, blá?
Eu tentei a pesquisa automatizada de pares / cestas, usando as técnicas de conhecimento público, e embora eu não tenha passado por todas elas com o meu testador de nível de carrapato, as poucas que eu examinei pessoalmente foram em grande parte inútil; A suposta propagação reversa da média que a pesquisa da minha rede revelou era apenas falsa ou devida a um lance bidirecional.
No entanto, eu sei de fato que as pessoas executam portfólios de negociação de pares automatizados decentemente lucrativos. Eu entendo que isso é possível, mas a maneira que eu me aproximei foi ingênua. Talvez o método legwork seja o caminho a percorrer, surgindo teses sobre motoristas e depois procurando portfólios que expressem as teses, com a construção da taxa de hedge real feita "rigorosamente". usando filtros de Kalman ou qualquer outra coisa.
Minha opinião é que conversar sobre negociação de pares é maravilhoso, mas deve haver um foco em reduzi-lo à prática, com algum tipo de fluxo de trabalho acessível, de modo que um usuário Quantopian possa sentar-se de pijama com uma xícara de café em um dia chuvoso. e, na verdade, criamos um algoritmo decente que teria a chance de entrar no fundo Q de crowdsourcing. Por exemplo, nós temos:
. tente encontrar alguns pares que você possa entender.
Talvez o método legwork seja o caminho a percorrer, surgindo teses sobre motoristas.
ESTÁ BEM. Então, qual é o fluxo de trabalho para seu usuário Q típico? Tenha em mente que isso precisa ser escalável. ele não fará nenhum bem se apenas usuários com um grau avançado e 20 anos de experiência na indústria puderem ter sucesso. Se a resposta for, "Bem, não há fluxo de trabalho. você só precisa saber & quot; então pares de negociação não serão acessíveis em Q. Temos Aaron & quot; s "leitura e pensamento" recomendação acima, mas leia o que?
Além disso, eu vi em algum lugar que existem técnicas para sintetizar pares de negociação, a partir de cestas de títulos. Isto funciona? Ou será que efetivamente terminamos com a carteira de ações de curto prazo referida por Aaron Brown acima?
O tipo de história calorosa e difusa que você menciona é inútil para investir, embora, como você diz, possa tranquilizar investidores e reguladores. O que você está procurando são covariáveis para refinar sua estratégia e, mais importante, avisá-lo quando não estiver funcionando. A armadilha do quantum é que, quando sua relação se rompe, ela simplesmente parece mais atraente para o seu modelo, e você é levado à destruição.
A história dos ovos e bacon é na verdade o inverso do que você quer. Isso significa que há um consumo total fixo, então a quantidade total consumida de ambos os produtos é fixa, o que significa que eles são cointegrados negativamente. Se eles estivessem positivamente correlacionados, digamos, porque os investidores aumentaram ou diminuíram todos os alimentos do café da manhã como um grupo, você faria uma negociação de pares. Você está procurando coisas que precisam estar em algum tipo de equilíbrio de longo prazo, mas em direções opostas a curto prazo. Uma história quente e difusa pode ser a construção residencial e as vendas de móveis, a curto prazo, se as pessoas economizam para adiantamentos, não estão comprando móveis e as famílias pobres recém-casadas estão vencendo com móveis antigos e com pouca mobília. Mas, a longo prazo, as casas serão mobiliadas. Isso nunca seria uma história de troca de pares porque está relacionando setores inteiros. Para explorar isso, você cria um modelo que rastreie todo o ciclo de vida e, provavelmente, envolve outros fatores, como taxas de juros e padrões demográficos e de migração da família, além de negociar um grande número de ações.
Para manter isso em prática, aqui está uma receita de Pairs Trading for Dummies (quero dizer que respeitosamente, eu sou um grande fã dos livros For Dummies).
Execute algum tipo de tela estatística para identificar alvos de negociação de pares promissores. Não procure por significância estatística extrema, apenas algum nível moderado para filtrar o ruído como 5% ou 1%. Isso pode ajudar a limitar um membro de cada par a empresas ou regiões sobre as quais você sabe alguma coisa.
Claramente, isso é para alguém que possui habilidades de quantificação, mas também habilidades gerais de pesquisa e julgamento de negócios.
Execute algum tipo de tela estatística para identificar alvos de negociação de pares promissores. Não procure por significância estatística extrema, apenas algum nível moderado para filtrar o ruído como 5% ou 1%. Isso pode ajudar a limitar um membro de cada par a empresas ou regiões sobre as quais você sabe alguma coisa.
Parece que poderia ser produtivo para a Quantopian abrir código-fonte de algumas ferramentas eficientes para a triagem (e talvez até para o seu jogo em termos de recursos de computação). Digamos que eu seja um especialista na empresa XYZ e talvez eu possa restringir meu campo de títulos candidatos para comparação com as ações listadas na NASDAQ, das quais existem cerca de 3.000. Então, é um problema de computação O (N), não O (N ^ 2) como Delaney menciona acima para o problema geral de triagem. No entanto, gostaria de calcular as estatísticas em uma base contínua, a cada minuto de negociação em dois anos. Eu teria:
(3000 comparações / minuto) (390 minutos / dia) (252 dias / ano) (2 anos) = 589.680.000 comparações.
É algo assim viável na plataforma de pesquisa da Quantopian? Se não, como eu o escalonaria de volta para algo que realmente seria executado em um período de tempo razoável (alguns dias no máximo), mas ainda forneceria resultados úteis?
Estou brincando com o algoritmo de Ernie Chan que você postou.
Surpreendentemente, ele falha completamente quando eu troco o par, ver o backtest anexado (eu só mudei a ordem).
Além disso, como tratar o hedge negativo (beta do OLS). Com a implementação atual, ficamos longos (curtos) em ambas as posições quando o sinal da cobertura é o mesmo que o sinal do escore z, o que você não espera da negociação em pares. Qual razão econômica pode levar a tais cointegrações?
Não sei exatamente por que está falhando quando você troca o pedido. Parece que a matemática pode não ser robusta para uma posição invertida & # 39; par. A taxa de hedge vem da definição formal de cointegração, que é a de que para beeu_t = y_t - b * x_t, u_t é estacionário (a média permanece a mesma). Portanto, tentamos estimar o parâmetro b em cada negociação, para que possamos produzir corretamente um desvio estacionário entre os dois títulos. Pode ser o caso de os dois serem cointegrados negativamente, se existe uma forte razão econômica para isso, não tenho certeza. Você pode tentar colocar restrições para não negociar quando tiver posições double long ou double short, ou empregando um método de estimativa melhor para b (mais pontos de dados, por exemplo).
Todos os problemas que você traz são melhorias muito sofisticadas, e fazer essas melhorias no algoritmo pode resultar em algo muito bom. Eu não tenho soluções de corte e secagem para você, pois agora você está dançando em torno do que é conhecido sobre negociação algorítmica. Muito disso se resume a testar rigorosamente diferentes métodos de processamento de sinais para ver qual produz o melhor desempenho da amostra. Além disso, como você disse, é importante deixar que o raciocínio econômico conduza a criação do seu modelo.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Obrigado pela sua resposta rápida.
Esta é realmente uma resposta muito valiosa, porque eu tinha medo de ter perdido algo óbvio.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Aqui está um site temporário que tem semelhança de informações de movimento, que é quase a mesma ideia que pares. StockA é a ação com a qual você está comparando, row é como esse par é classificado para todos os pares (sua contagem de linhas). Ele contém apenas informações para os primeiros 5000 pares ou mais.
Os dados são extraídos do período de agosto de 2014 a fevereiro de 2015 e são uma média de cada dia.
(Alterar IYR para símbolo desejado)
A idéia por trás do algoritmo não é realmente para a troca de pares, mas é para a similaridade de como um par se move. Deixarei este site de teste por algumas semanas.
Obrigado Delaney. É um ótimo passo inicial para a técnica de negociação em pares.
I am working on the missing piece of this strategy which is how to use Quantopian Research environment to find statistical cointegration stock/ETF pairs from entire universe or from the same sectors. After I construct good pairs, then I can use the Notebook you provided for further analysis and backtest.
Does anyone have any suggestion for me?
I have a question for those trading pairs.
How do you deal with the large processing requirements?
I coded some tests for co-integration and results per combination take roughly 1 second.
I can get this down with parallel processing and by storing data locally but a universe of 2000 stocks will still have 4000000 potential combinations.
Perhaps pointing out the obvious, but .
A pre-screening tool, or pre-screening done for you for a fee .
When I was researching this sort of thing a couple of years ago, the baskets of 3 and 4 of only a few hundred ETFs took months on my MacBook. And they were all mostly garbage, though I never actually went through them all. I probably should.
If I remember correctly, that was 1.6T combinations, or something like that.
The formula is R to the Sterling S, divided by S!
so, for 4000 stocks, it would be.
(4000 x3999)/2! or, about 8 million pairs made from the 4000 typical stocks. for 3 stocks considered together, there would be 4000 x 3999 x 3998 /3!
You can prune the possible tree pretty easily though. I believe most stocks behave as if they really were ETFs (at the market neutral way of looking at it only) and can be represented by a group of other stocks, that move with their same fundamentals. You only have to know what sectors they move with, and then check for pairs against this.
So, for example, with HLF, it moves with consumer, several currencies, emerging markets, and a few others. It is hard to separate out exactly as emerging markets also move with currency, so which is which becomes the question.
For two typical tech stocks that appear to be very similar, it may well be the case that their main difference is which currencies they move with. So, for most of the time, they may appear co-integrated, but then, when there is a difference in currencies that affects one a lot, and not so much the other, they then move apart.
I was working on an algorithm to determine the underlying components, (so to speak) that collectively make each stock behave with the same logic as if it was a multi-sector ETF. (where the underlying stocks are a mystery to be solved) I have most of it done, and I believe I have enough done to prove it does work this way, but I lost my real time quote stream a few months ago, and so stopped working on it.
since my algorithm would need to consider up to 15 underlying components to solve this problem, it would be 4000 x 3999 x3998 . 3985/15! So, I have to trim it. The link I posted a few messages above shows some of the results of this work, where I first determine the possible stocks to consider, for each symbol.
It is my belief that the market is essentially swamped out with pairs trading, and this is why it works so mathematically perfect for each stock to behave as if it is an ETF.
There is certainly a high computational cost to looking at all possible pairs. However, there is a tradeoff to this approach, as you put yourself at a high risk for multiple comparisons bias. Please see earlier in this thread for a fairly complete discussion of this issue. Regardless of which method you use to select pairs, you'll want to do some additional validation using the notebook and then use the algorithms in this thread to try backtesting a strategy.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Indeed, Aaron Brown's advice is gold.
What is "multiple comparisons bias"? I'm lazy and don't feel like sifting through this rather extensive discussion thread.
I find it hard to believe that pairs trading would work as a scalable hedge fund strategy (be able to pour $10's of millions into a single pair). Is there any evidence? In other words, why is Quantopian promoting this?
This is one of the best threads on the site.
It scales; you can trade hundreds of pairs.
Multiple comparisons is a core problem in all of statistics, right up there with overfitting. The general idea is that if you run 100 statistical tests on random data, you should still expect to get 5 below a 5% cutoff and 1 below a 1% cutoff based on random chance. This is true when testing various iterations of a model, or many pairs. Because the number of pairs is O(n^2) you should expect to get a lot of spurious p-values when looking for pairs. A naive strategy of just looping through pairs won't work, you need to be a bit more sophisticated.
And yes you trade many pairs with low exposure to each. That said, I think that long-short equity strategies may be a better first bet to get into the fund at this point, just based on robustness and capacity.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
There is more electricity used in the state of New Jersey doing calculations on the market than there is electricity used in that state for manufacturing. Pairs strategy likely accounts for at least 50% of this usage as even HFT likely often uses some version of deviation from the mean. It is my opinion that the market is so saturated with pairs trading that given the price of any ten tickers that had no big news, one could deduce the price of the rest of the market and be within 0.7% of the actual price, 90% of the time for the top traded 4000 stocks. (and it could probably be done with less than ten tickers. ) So, for a 30 dollar stock, the margin of error would be about a quarter. This is how precisely, compared to each other, I think they move. Until there is news.
It sounds like a corollary to the reciprocal of the law of large numbers; given enough samples you will always find something to fit.
I would reintroduce the concept I proposed in an article in S&C last spring ; the directed acyclic graph or DAG. Using thousands of correlated or cointegrated pairs I built groups from them. Those groups were essentially social graphs of securities. You can search here for DAG, but briefly, you can use the concept of pair trading, that is, fade and favor the divergences, but with a correlated group. And such a group is assembled, dynamically, from a list of pairs that are "friends of friends". It's a pairs strategy, essentially, but with lower risk and less work managing hundreds of separate strategies.
That said, I think that long-short equity strategies may be a better first bet to get into the fund at this point, just based on robustness and capacity.
Have people been coming up with good ones? If so, what proportion are using the new data sets? If not, why not, do you think that is?
I haven't been focusing on them at all, mostly because there's a problem of opportunity cost; if I spend all my time looking for equity long-short algos, not only is there a chance I don't find anything, but if I do, there's still a chance that Quantopian doesn't select it, and since I cannot trade them myself, that time is wasted (unless I pitch it to other funds I suppose). If I look for algos that I personally can trade, and I find some, then I trade them.
I realize there's an unfortunate schism wherein I am using your platform but not contributing to your business model, so if you have any ideas how I can help without wasting my time writing algos that only work high account levels, please let me know. Pairs trading/statistical arbitrage might be one solution, but I've found them very difficult to implement; anything that looks promising in Quantopian fails the backtest when using dividend-adjusted bid-ask tick data, so I might shift my focus back to building my own lower latency infrastructure for a while.
I would reintroduce the concept I proposed in an article in S&C last spring ; the directed acyclic graph or DAG. Using thousands of correlated or cointegrated pairs I built groups from them.
Legal. Yeah, pretty similar. The DAG though was used specifically to find the networked graph. Those trees might embody the same thing, not sure. But I'd guess the idea is approximate.
Why would anyone want to pairs trade when trading a Minimum Spanning Tree or correlated network graph of stocks is so much safer and easier? I've built dozens of pairs strategies and the directionality of the pair always broke the model. And all pairs I ever tested all went directional at some point -- beyond the account's ability to Martingale down.
Have people been coming up with good ones? If so, what proportion are using the new data sets? If not, why not, do you think that is?
I can't release any specific data on this. I can say that there's a lag between when we update product features/try to educate people about algorithm writing techniques (larger universe size, shorting), and when new strategies start appearing. We'd love more large universe strategies right now and I'm trying to figure out ways to make it easier for folks to develop large universe long-short strategies using pipeline.
I haven't been focusing on them at all, mostly because there's a problem of opportunity cost; if I spend all my time looking for equity long-short algos, not only is there a chance I don't find anything, but if I do, there's still a chance that Quantopian doesn't select it, and since I cannot trade them myself, that time is wasted (unless I pitch it to other funds I suppose). If I look for algos that I personally can trade, and I find some, then I trade them.
I realize there's an unfortunate schism wherein I am using your platform but not contributing to your business model, so if you have any ideas how I can help without wasting my time writing algos that only work high account levels, please let me know. Pairs trading/statistical arbitrage might be one solution, but I've found them very difficult to implement; anything that looks promising in Quantopian fails the backtest when using dividend-adjusted bid-ask tick data, so I might shift my focus back to building my own lower latency infrastructure for a while.
Totally reasonable. We don't release our product with the expectation that everybody will use it to develop strategies for the fund, we also want to support your use case of personal trading. We also understand there's a conflict between pushing people to write high capacity market neutral long-short strategies, when those will never work on their own money. What I'm trying to figure out is ways to make the workflow of producing and evaluating factors easier, because once you have a factor-based ranking system, it's pretty easy to slot that into an existing long-short algorithm using pipeline. I'm working on sharing a pipeline algorithm with the community and attaching it to the lectures page in an effort to get more cloning and tweaking going on.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
I share Simon's sentiment. I've continued to participate in the contests, but the idea of spending tens (hundreds?) of hours trying to come up with an uber algo that will compete with the big dogs sounds like a lot of work, with a very uncertain pay-off (it's not even clear that you are still working on the hedge fund. any substantive news?). The pipeline thingy has a bit of a learning curve, so I haven't taken that on yet (the fact that lots of obscure modules need to be imported is a red flag). That said, if there were good working examples that could be tweaked, I might give it a go.
What I'm trying to figure out is ways to make the workflow of producing and evaluating factors easier, because once you have a factor-based ranking system, it's pretty easy to slot that into an existing long-short algorithm using pipeline.
Why don't you get all of the Q eggheads together for 1 week and see if you can come up with a long-short algo that would be Q hedge-fundable, and publish it (and better yet, actually fund it). Not only would this provide an existence proof, but you should also gain some insight into the workflow and the person-hours to accomplish the task.
Here is a pipeline algorithm that I just published as the goto example of a long-short equity strategy. I'm sure it will go through many improvements as the public eye turns to it, but it should at least be a start. It's tricky because we do want to publish algorithms that are 95% of the way done, so that users can take the last 5% and improve the strategies in many different uncorrelated ways. With long-short equity most of the work is in choosing good factors and factor ranking techniques. Unfortunately those are the type of signals that will disappear when shared publicly, but the actual machinery to trade within the algorithm should stay pretty consistent. If you're maybe looking to learn pipeline a bit, I would recommend going through Lectures 17 and 18, then looking at the algorithm.
I can say for certain we are working on the hedge fund. Even if you have strategies that aren't consistently winning the contest, we may be interested in an algorithm that can consistently do ok. Ultimately, my job as the one overseeing the lectures is to keep trying to make it easier so people don't have to spend as much time working on algorithms that may never pay off for them, and so we get more algorithms that do pay off in the long run.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
I start to implement pair trading backtesting in research environment instead of IDE. The main reason is to automatic run multiple pairs performance analysis before I jump into IDE for full backtest. Another reason for this work is to do further analysis for returns from many pairs.
I am wondering where I can find the example of backtesting in research environment to start with. Any comment is very appreciated.
In your research environment there should be a 'Tutorials and Documentation' pasta. Inside the folder should be a notebook with the title 'Tutorial (Advanced) - Backtesting with Zipline'. Make a copy of that and let me know if that's enough to get you started.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
May 28 algo falls below benchmark if extended to date and -43% PvR with default slippage and commissions, tanking thru 2015.
Hope it can be rescued b/c it shows good potential.
The example strategies cheat and run on the same timeframe over which we did research and found the securities to be cointegrated. In a real strategy you'd want to find pairs that were cointegrated into the future and not just historically cointegrated. The template should stay largely the same, so it's an issue of swapping in new securities that you have statistical evidence will stay cointegrated.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Could you post a tutorial on calibrating an Ornstein Uhlenbeck process for mean reverting series residuals?
We've added a lecture on this to our queue. No idea when we might currently get to it, but it's on there.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Ages ago I posted, perhaps as anonymole, that a "pair" needn't be made of only two securities. In fact, the whole "we only allow low beta strats" mantra is pretty much an argument that all strategies should be a variation of a pairs strat. That is, over all, a market neutral position is best.
Taking this further however, and applying a more formal model to the pairs strategy (that the security set have a "story" attached to it) I wonder if the two halves of the pair would do better as independent baskets of securities. That if one approached a pairs strategy with the mind to match up two behaviorally opposed baskets of securities that instead of trying to search all pair combinations looking for all the super-great-marvelous attributes a pair should have, that instead, one determine the two sides of the pair coin and fill each side with the most appropriately identified securities -- for each side.
A simplistic model might be described thusly:
Equities which cycle up in the spring/summer and down in the fall/winter would be bundled together and set against equities which cycle oppositely (down in the summer, up in the winter).
No doubt there are more interesting or undiscovered cycles that exist. My point is that rather than identify securities that yin and yang, one discover technical, or macro, or fundamental classifications which zig when the other zags. Then find securities which fit each of those baskets of behavior.
This is a very interesting idea and definitely something that professional quants do. At the core we just want two assets on either side of a pair, and a portfolio of assets will do just as well as a single equity. There are probably pros and cons of each method, but the idea of using a basket of things rather than a single thing can greatly reduce your position concentration risk and lead to a better algorithm. I'd say it's worth research. You'd still likely want a few different pairs of baskets as each would smooth out the return curve of the other and produce a lower volatility algorithm.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
I have to run an errand, so I only have five minutes, but hopefully I can be clear in that time.
To demonstrate the chops of an AI system, I created an algorithm that can represent the small changes in stocks price, as the sum of a set of ETFs. For example, with MSFT one might have XLK, XLY, FXE, FXI, and some others.
I can show that the typical price movements during a day can be represented in this way. However, when there is specific news, then it is no longer true, if the news is strong.
What I believe this shows is that instead of things "returning to the mean" they are in fact not moving arbitrarily and so, if they return to the mean, it is because one of the underlying components in fact moved. (Of all the underlying components, usually only one or two have news, and the rest are balancing each other out, once the price has adjusted.)
How might one design a trading platform for this as even if you do know it is the sum of other waveforms that are causing one waveform, one still doesn't know what causes them to move until after the fact.
(the reduction in influence is 1/1.6 when looking at the components, so after a couple of feedback loops, the influence is not measurable. Thanks, and sorry for the hurried note,
Have you read Algorithmic Trading written by Ernie Chan? For sure you read it, I have a question: in fact I am not good in programming and working with Matlab, I am really interested in Currency cross rate part of the book and I want to implement the positions in live trading but I don't know how to do that in fact I can't understand what the numbers as positions mean! If somebody can guide me I'm really appreciated.
Not entirely sure I'm understanding your thesis but it seems that you've created an expression that models the returns of a specific stock from it's sector exposures. This is actually a common risk modeling tactic, check out my notebook here. To build a trading strategy off of this I would take your hypothesis about changing news and use that to alter the coefficients of your model. A cool place to start would be to check out the lectures on factor modeling and then maybe look at some news/sentiment data sets to see if you can find any anomalies.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
That is close. It models the returns to within a few cents usually, at any moment in time, depending on the stock and its volatility as a sum of its sectors. (except when it has specific news.) What I envision behind it is a large set of funds using NLP to invest by sector based on news. Because they are so large, then they tend to swamp out the market during normal times.
I can also show that stock prices changes are directly proportional to the sum of the underlying sectors information, for most time periods. For example, the price changes for three months show this and also for three weeks, which is a bit chaos like, as it would seem they wouldnt be so perfectly in tune. Anyway, with this I can sort stocks by their overall market efficiency (the more efficient you are, the more you sync with the relationship stated above).
I also believe that there are huge funds that are interested in doing nothing more than treading water (as one possible explanation) and they move their money around the world, just trying to stay even, and so the result is that at any given time, the sum of everything stays near zero. (when one thing goes up somewhere, something else somewhere else goes down.)
These relationships also break down during periods of very high volatility such as fall 2015.
There are other things I am able to quantify, but again have no idea how to use. When information about a specific stock or sector hits the market, it is my observation that the more objective the information, the faster the market responds, and the more subjective it is, the slower the market responds.
For example, when Ackman says that HLF is a pyramid scheme, then it can sometimes be hours, and sometimes even days before that news is no longer affecting the price of the stock, but when an analyst upgrades or downgrades a stock, that is more objective and the entire price adjustment is over in fifteen minutes. (If you subtract out market movements then an analysts announcement looks like a log curve, with most of the action in the beginning and a bit of a ringing at the last.)
Again, this all happens too fast to be of use, and it is after the fact that I can say, "That was subjective."
I don't think I am able to alter the coefficients as you suggest. I am using a hard coded take on a system of recursive polynomials for my modeling, so there are billions of coefficients.
Hi, I have a quick and possibly dumb question. Why did you use the ratio instead of the difference between S1 and S2 in the Quantopain pairs trading lecture? In the co-integration lecture, you use the difference instead. In other sources, they use the difference as well.
There's an updated notebook, algorithm, and video available on the lecture series page.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
And as a response to pandasaurus' question, which I unfortunately just saw, we have removed the ratio as it was a typo in the lecture.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Greetings Quantopian Community,
I was at the NYC Event on Pairs Trading, and the current example algorithm is deprecated, such that one cannot deploy it in live trading. With this fix, users can now deploy the algorithm in live trading. The fix is hosted as a pull request on github--thanks.
Muito obrigado. Could you please submit your PR to the following repo? It's where we store lectures and examples. Doesn't quite fit in the current form of zipline.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Thanks, Delaney. I submitted the PR to the specified branch.
Obrigado! Delaney. I am finishing my graduation thesis these days, Your work may help me a lot.
That's great to hear, Dzi. Hope it goes well!
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
I have question in regards to high frequency pairs trading using bid/ask price. One thing that I noticed is during an entry signal if I'm supposed to go long in one and short the other, the Long position that I enter would be using the ask price and this ask price normally is higher than the bid price, so when my exit signals to exit, my bid price that I close my position at will often cause me to loose than make money. What are some of the ways to prevent this from happening or what are some strategies that goes hand in hand with trading high frequently with pairs strategy. Further, how are limit orders used with the bid/ask price.
If you need to make the spread in order for the strategy to be profitable, then you are squarely competing with high-frequency market makers, and it's a whole different ball game. You are unlikely to win. If you have control over the specific order types you send, you could attempt to use mid-point pegs or something, but as soon as you admit any sort of limit orders where execution is not immediate, you now need to be concerned about being exposed unhedged, which is something that you'll need to backtest. (not easy either). What some people do is try and rest or peg an order for the less liquid leg, and attempt to save some of the cost of the wider spread (though again, these days, you'll probably just get adversely selected for no net gain), and then as soon as that fills, you aggressively execute the hedge leg across the narrower spread.
How does one use both bid and ask z score in high frequency trading? For simplicity, I can understand using z score, but when it comes to using both bid and ask price z score, I have trouble picturing how it is used.
Simon's right, mid-frequency strategies generally should be fairly robust to bid-ask spreads. If they're not the edge is probably too small to be consistently profitable. For high frequency trading you do have to consider the bid and ask in many different ways, as your trading will be very sensitive to movements in both. How exactly you use the data would depend on your model.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
You can imagine that the spread is a synthetic asset. For instance, X = 1L -1S so a single unit of X is long one unit of L and short one unit of S. If you need to buy one unit of X immediately, you will buy at the ask of L and sell at the bid of S. If you need to sell one unit of X, you will sell at the bid of L and buy at the ask of S.
You can then easily calculate the bid and ask for X, you have just two "z-scores" to deal with. Then, if you like, you can delay buying until the X_ask_zscore < threshold, and delay selling until the X_bid_zscore > exit_threshold.
Espero que isto ajude.
I had a chance to see this notebook before and I would recommend it to everyone here. Lots of amazing info can be found inside.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Hey Simon. thanks for that last post. I've been thinking through the logic behind that, but I do have some questions. Hope you don't mind explaining or expanding on it a little. 1) If I understood you correctly you mean X being the spread between a pair? in other words one unit of X immediately to be traded immediately, I would think that you will buy at the ask of X rather than L to be immediate wouldn't you? One problem that I would encounter by buying one unit of X at the ask price of L would be that the ask price of L may not be the lowest ask price of X and therefore may cause me to still queue to purchase the unit of X or not even fill. Can you say a little more in regards to this?
2) Further, there is one concept that I'm having a hard time to understand. Let's say that my Z score > entry threshold of +2. I would short L by one unit by selling one unit of L at the bid price of L and go long one unit of Y at the ask price of Y. Assuming hedge ratio is 1 and all. When my Z score < exit threshold of say 0.2. I would then exit my short and long position of the pair. The issue that I would encounter assuming no fees and all is that I would loose money during these trades. I'm having a hard time understanding why that would be if my Z score returned to or close to mean. Is the reason behind this due to the fact that the volatility of the bid/ask price may not be high enough to allow the difference in the entry and exit bid/ask spread price at the start and end of the transaction to pull far enough to earn money?
Please take a look at the last part of the page for this link that shows the true correlations, which are arrived at by saying "from the point of view of a pairs trader, how correlated are these tickers."
If you know how to subtract out the part of the market that floats all boats, to be left only with the information pertaining to neutral, there are extreme correlations. XLK is the ticker used in the example, but there are a thousand I could have used. When you know how to subtract out all but the neutral information, the market becomes completely different in how it appears.
Scroll to the very bottom of the article and look at the two tables with correlation information. These numbers are this way because there is so much interest in pairs trading that it tends to swamp things out. It is even more pronounced in Europe.
1) I think you are getting a bit confused; X is not a real thing, it's a synthetic asset formed by the basket of L and S. X has a price to buy and a price to sell which you calculate from the bids and asks of the components. If you cross the spread, generally, you trade immediately in small enough size. You only have uncertainty about fills if you try to earn the spread. That gets much more difficult.
2) Maybe. If your trades are not making money, I mean, that's a big problem. I can't answer why they are not making money. It could be transaction costs like the bid/ask spreads, you should analyze the volatility of your baskets as a function of the bid/ask spreads you have to pay. If you have to cross four 5-cent spreads to try and capture a spread mean-reversion of 2 cents, well yeah you are going to have problems. A bigger problem I found was that mean reversion happens one of two ways; either the asset reverts to the mean, or the mean converges with the asset (assuming you are constantly recomputing the mean, which seems to be common practice). In both cases your z-score goes back to zero, but only in the first case do you make any money.
@daniel I read your article, the correlations at the end, are those of prices, or returns ?
Thanks for clearing that up for me. The idea of using synthetic assets is relatively new to me. I went and researched it a little and noticed that it is often used to capture streams of cash flow. I'm currently trying to perform residual pairs trading with Chinese Future Contracts. As I research it for the use of Futures, I don’t really find much articles or explanations. Is it applicable to Futures?
At the same time, I'm relatively new at this and trying to go through the lectures and stuff to learn. When you say I should analyze the volatility of my baskets as a function of the bid/ask spreads. Do you know where I can find a lecture that discuss this further? Sorry to ask some fundamental questions. One thing I notice in my data is that the bid/ask spread is really small and by small the it is just a spread of one tick of the futures contract; while the Volume for that tick is also small just around 80 or less contracts for either bid or ask.
The correlations are about prices, but just a subset.
(I have edited this down, as compared to what you probably have in email. Please don't copy anything from the email onto the board.)
James - maybe? You need pairs/baskets with enough variance to profitably trade the mean reversion. There tends to be a spectrum; structurally correlated assets (like ETF vs their component baskets) are perfect to trade, so perfect, that everyone does it and therefore the deviations are probably less than the spread. Then there's really shitty pairs which you find doing brute force analysis of the stock market. These have lots of variance, but they probably don't converge, and/or the relationship is totally spurious. Read closely Aaron Brown's posts on this thread. You want something in the middle.
Danial - I am not sure how useful correlations of prices of any kind are ? They are bound to be super high.
By itself I don't believe there is any one thing that is useful for a neutral strategy.
My approach is to look at the market as being represented by several hundred core waveform, and similar to the idea of Fourier Transform, you can use these fundamental waveform to create the 4000 heaviest played stocks. So, basically everything I believe about the market is based on the idea of correlations, as this is what I used as one of the first steps to find those wave forms. (which are not easy to find.)
Consider if you have Tickers AAA and BBB, and they are two similar stocks.
AAA might have as its composite the waves A, B, C, D, E, F, G, H, I, J, and BBB may have D, E, F, G, H, I, J, K, L.
During the times that there is little to no activity in the components A, B, C, K, L then the two tickers would be nearly perfectly correlated. But if suddenly component A had news (for example), then the perfect correlations would no longer hold, since stock BBB does not have an A component waveform..
If you apply the above to the idea of mean reversion, then you can see what I believe the mean reversion strategy is actually about.
In my opinion the best way to play a neutral strategy would be to devise a portfolio that is about the underlying fundamental wave components..
And in the interest of completeness, I will mention that in the above examples, waves A, B, C, etc are also made of composite waves, (and those composites . ) as the market is self referencing. The several hundred are at the bottom of the self referencing, and are something that exists in theory, that I believe I could "easily" find, but have not spent the time and energy to do so as of this date.
I also believe that if I had data for all the major markets of the world and was able to deduce the underlying component waves for those instruments that are heavily played by the collectively speaking, multi-trillion dollar funds, that the sum of these waves would (except for inflation) most of these times sum to be zero.
Some researchers generate the log price series of two equities with the daily close. Then the spread series is estimated using regression analysis based on log price series data. For equities X and Y, they run linear regression over the log price series and get the coefficient β.
Any reason they use log price series instead?
Desculpe, algo deu errado. Tente novamente ou entre em contato enviando feedback.
Você enviou com sucesso um ticket de suporte.
Nossa equipe de suporte entrará em contato em breve.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
Par Estratégia de Negociação e Backtesting usando Quantstrat.
Um recente Webinar Apresentação de Marco Nicolas Dibo.
Este webinar perspicaz sobre negociação de pares e dados de sourcing abrange os fundamentos da estratégia de negociação de pares, seguidos de dois exemplos. No primeiro exemplo, Marco cobre a estratégia de negociação de pares para diferentes ações negociadas na mesma bolsa, e no segundo exemplo, Marco ilustrou a estratégia de pares para diferentes futuros de commodities negociados em diferentes bolsas. Marco também detalha as diferentes fontes de dados, incluindo o Quandl, que pode ser usado para criar estratégias de negociação.
Este artigo é o projeto final submetido pelo autor como parte de seu curso no Executive Program em Algorithmic Trading (EPAT) da QuantInsti. Confira nossa página de projetos e veja o que nossos alunos estão construindo.
Marco passou sua carreira como comerciante e gerente de portfólio, com um foco particular nos mercados de ações e derivativos. Ele é especialista em finanças quantitativas e negociação algorítmica e atualmente atua como chefe da Quantitative Trading Desk e vice-presidente da Argentina Valores SA Marco também é co-fundador e CEO da Quanticko Trading SA, uma empresa dedicada ao desenvolvimento de estratégias de negociação de alta frequência e software de negociação. Marco é bacharel em Economia e mestre em Finanças pela Universidade de San Andrés.
Introdução.
Uma das minhas aulas favoritas durante a EPAT foi a arbitragem estatística, então a estratégia de negociação em pares pareceu uma boa ideia para mim. Minha estratégia desencadeia novas ordens quando a relação par dos preços das ações diverge da média. Mas, para trabalhar, primeiro temos que testar o par a ser cointegrado. Se o coeficiente par é cointegrado, a razão é reversão-média e quanto maior a dispersão de sua média, maior a probabilidade de reversão, o que torna o comércio mais atraente. Eu escolhi o seguinte par de ações:
A idéia é a seguinte: Se encontrarmos duas ações correlacionadas (elas correspondem ao mesmo setor), e a proporção de pares divergir de um certo limite, nós encurtaremos o estoque que é caro e compraremos aquele que é barato. Uma vez que eles convergem para a média, fechamos as posições e lucramos com a reversão.
Lógica de Estratégia de Negociação.
A lógica é simples. O algoritmo calcula a pontuação Z diária para cada par de ações. O escore Z é o número de desvios padrão que a relação do par divergiu da média:
Onde R é a razão de preço de ambos os estoques, μ é a média da razão e σ é o desvio padrão da relação de preço.
Uma vez que a pontuação Z está fora de um certo limite, preenchemos a primeira condição necessária para enviar um pedido.
Mas o algoritmo também deve atender a uma segunda condição: calcula o teste de Dickey Fuller aumentado para o par de estoques. Mais especificamente, obtém o valor p do teste. Em seguida, compara-o com um nível de significância definido (alfa) e, se o valor p for menor que o alfa, isso significa que as séries de razão de preço são estacionárias e a segunda condição é atendida. Se ambas as condições forem atendidas, o algoritmo compra o perdedor e vende o vencedor. As regras de saída se aplicam em um determinado limite de pontuação Z. Para a otimização da estratégia, as variáveis que usei foram as seguintes:
Limites de entrada do Z-Score Limites de saída do Z-Score Segunda condição (cointegração) Verdadeiro ou Falso.
Detalhes do código e Backtest no exemplo:
O período in-sample para o backtesting foi de 01-01-2009 a 31-12-2012. O escore Z foi calculado usando os seguintes parâmetros:
Média móvel do índice de preço: 20 dias Desvio padrão do índice de preço: 20 dias Janela de teste do ADF: 60 dias Capital inicial = 100.000 USD Quantidades de compra / venda de spread = 3000.
Quando encurtarmos o spread, estamos vendendo "C & # 8221; e comprando & # 8220; BAC & # 8221; e quando compramos o spread, estamos fazendo o oposto. Eu usei biblioteca quantstrat [1] para backtesting a estratégia. Vamos mergulhar no código:
Como mencionado anteriormente, usarei a biblioteca quantsrat para otimizar minha estratégia. Para usar a quantstrat, primeiro precisamos definir e inicializar instrumentos, estratégia, portfólio, conta e ordens:
Então, calculamos e adicionamos à estratégia nossos dois indicadores para a estratégia:
& # 8211; Teste ADF (Verdadeiro ou Falso)
No gráfico a seguir, podemos ver a evolução do escore Z durante o período e os valores possíveis para o limiar, onde a razão reverte para a média e os valores extremos. Eu defino algumas linhas no limiar da pontuação Z +/- 2, onde parece haver uma reversão da proporção do par. Este valor do z-score significa que a relação do par é +/- desvios-padrão da sua média.
Agora, definimos nossas variáveis de otimização:
Como podemos ver em nosso resumo, existem 2 indicadores, 7 sinais e 3 regras definidas em nossa estratégia. Agora podemos executar o backtest, verificar as transações e o desempenho da nossa estratégia.
A otimização foi feita com os seguintes valores para as variáveis:
Do backtest na amostra, obtivemos os seguintes resultados:
Desta tabela podemos obter os valores das variáveis que otimizam a estratégia. À primeira vista parece que há 3 candidatos (caso 4, caso 6 e caso 8). Se compararmos entre os casos 6 e 8 chegamos à conclusão de que o caso 8 é o melhor, pois tem um índice de Sharpe anualizado maior e lucro para rebaixamento máximo, uma porcentagem maior de negócios positivos, um patrimônio final maior e com o mesmo número de comércios. Então agora ficamos com apenas 2 candidatos: 4 e 8. Se nós apenas estivéssemos verificando o que tem o maior índice anualizado de Sharpe, preferiríamos o caso 4. O caso 8 também não leva em conta que a série deve ser cointegrado, e caso 4, portanto, isso seria outra vantagem para o caso 4. Mas se levarmos em conta o número de transações, o lucro para o rebaixamento máximo, o patrimônio final, a porcentagem de negócios positivos e o fato de que diferença na relação de Sharpe não é uma grande diferença, nós definitivamente selecionaremos o caso 8 como nosso melhor candidato.
Fora do Backtest de Amostra:
Agora que otimizamos a estratégia e obtivemos os valores ideais para os parâmetros, podemos executar uma amostra da blacktest e ver como a estratégia funciona. O período fora da amostra para o teste de retorno vai de 01-01-2013 a 31-12-2015 e os valores otimizados para os limites e regras foram os seguintes:
Limite de Compra do Z-Score = -2 Limite de Venda do Z-Score = 2 Limite de Saída Longo do Z-Score = -1 Limite de Saída Curto do Z-Score = 1 Teste do ADF = Falso.
O gráfico a seguir mostra as diferentes transações, a equidade final e os resultados de redução para nossa estratégia:
Da tabela abaixo podemos ver que os resultados do backtest out of sample não são tão bons quanto os que obtivemos do backtest in sample.
O índice de Sharpe anualizado ainda é positivo, mas menor do que o 3,52 obtido anteriormente. O lucro para o rebaixamento máximo é bem pior do que o 4,23, mas o rebaixamento máximo diminuiu de 16327 para 8641. Nossa estratégia oferece um retorno acumulado de 16,04% e um retorno anualizado de 5,08% durante os três anos em que foi implementado.
Conclusão.
A ideia quando comecei o Programa Executivo em negociação algorítmica era aprender como modelar uma estratégia de negociação quantitativa, fazer o backtest e depois otimizá-la. Graças aos meus professores e ao pessoal da QuantInsti, sinto que o objetivo foi alcançado. Tudo no curso foi excelente e recomendaria a todos os interessados em aprender negociação algorítmica.
Próximos passos.
Para entender as estatísticas por trás do Pair Trading, Correlation e Cointegration, dê uma olhada no nosso post aqui. Aprenda a aplicação da reversão à média e otimize os parâmetros de negociação usando este modelo Excel para download.
Se você é um codificador ou um profissional de tecnologia olhando para iniciar sua própria mesa de negociação automatizada. Aprenda negociação automatizada de palestras interativas ao vivo por profissionais diários. O Programa Executivo em Negociação Algorítmica abrange módulos de treinamento, como Estatísticas & amp; Econometria, Computação Financeira & amp; Tecnologia e Algoritmica & amp; Negociação Quantitativa. Inscreva-se agora!
Pair Trading Part 2 – Code Correlation Based Pair Trading Strategy in R.
In this article, we’ll learn to code a Correlation based pair trading strategy. This post is in continuation of our last article on Pair Trading, where we coded Distance based Pair Trading strategy. If you are completely new to the Pair trading term, then I suggest you read my last post here analyticsprofile/index. php/2017/07/30/pair-trading-part-1-code-distance-based-pair-trading-strategy-in-r/ but if you have a decent idea about Pair Trading then you can directly jump to this post.
You can choose any two stocks if you want, but make sure that the pair meets 2 conditions.
High historic correlation between the stocks’ daily closing prices The spread of the pair should be least correlated with the market index.
Also, do note that there’re two ways of executing a Pair trading strategy.
Beta Neutral – where the spread’s beta is approx 0 because both the stocks have similar beta Rupee Neutral – where the amount of position on long side and short side is almost same.
So let’s start by importing the libraries and data of the stocks in R first. Also, please note that is this below example, we’ll code for the stocks.
Now, since we require the only closing price in our strategy, let’s keep that information only starting the year 2012. And also check for any NA values in data and fill them using BackFilling method.
Let’s calculate the daily return using the Delt function of quantmod.
We need to get both the returns in a single xts object data to simplify the further code.
Now since it’s a correlation based strategy, we’ll calculate 100 period rolling correlation between the stocks using our function, that we’ll build, correlation . Also, let’s plot the rolling correlation to visualize it.
So, we can see that whenever the rolling correlation weakens, it gets better in some time. And our complete strategy is based on this mean reversion behavior of correlation between our pair.
The strategy is to short the outperforming stock and go long on the underperforming stock whenever the temporary correlation weakens which means one stock going up and another going down.
And to calculate the trade size, we would need to calculate hedge_ratio which is simply the ratio of the closing price of ICICIBANK to SBIN. So whenever we want to go short on spread we’ll short 1 unit of ICICI and go long on hedge ratio times units of SBIN.
Now, it’s time to generate trading signals and for that, we need to define our trading logic. So, in this example, we’ll go long on the spread when the hedge ratio goes below its n_period rolling mean by n times of its rolling standard deviation and vice versa. Please note that both n_period and n can be changed as per your selection of stocks.
Let’s generate trading signals.
Also, now we know that we will act (BUY or SELL) once we get the signal our execution will be on a delay of 1 period, So, let’s apply lag of period one to our signal.
Now let’s return the returns generated by this strategy.
Time to analyze the return series, trade_return and as always we’ll use the library PerformanceAnalytics for that.
The strategy seems to work well but please note that the post is just for the education purpose, we definitely need to consider many other factors like trading cost and others before entering markets. Anyhow, we know the strategy logic and we can play with it by changing stock pairs and the model parameters. Hope you find the article informative. Do comment with your views or doubts.
In next post, we’ll discuss last type of Pair Trading strategy – Co-integration Based Pair Trading.
R Development Page.
Contributed R Packages.
Below is a list of all packages provided by project PairTrading .
Important note for package binaries: R-Forge provides these binaries only for the most recent version of R, but not for older versions. In order to successfully install the packages provided on R-Forge, you have to switch to the most recent version of R or, alternatively, install from the package sources (.tar. gz).
classical pair trading based on cointegration in finance.
Build status codes.
0 - Current: the package is available for download. The corresponding package passed checks on the Linux and Windows platform without ERRORs.
1 - Scheduled for build: the package has been recognized by the build system and provided in the staging area.
2 - Building: the package has been sent to the build machines. It will be built and checked using the latest patched version of R. Note that it is included in a batch of several packages. Thus, this process will take some time to finish.
3 - Failed to build: the package failed to build or did not pass the checks on the Linux and/or Windows platform. It is not made available since it does not meet the policies.
4 - Conflicts: two or more packages of the same name exist. None of them will be built. Maintainers are asked to negotiate further actions.
5 - Offline: the package is not available. The build system may be offline or the package maintainer did not trigger a rebuild (done e. g., via committing to the package repository).
If your package is not shown on this page or not building, then check the build system status report.
Comments
Post a Comment